Explore Interregional EEG Correlations Changed by Sport Training Using Feature Selection

نویسندگان

  • Jia Gao
  • Wei Wang
  • Ji Zhang
چکیده

This paper investigated the interregional correlation changed by sport training through electroencephalography (EEG) signals using the techniques of classification and feature selection. The EEG data are obtained from students with long-time professional sport training and normal students without sport training as baseline. Every channel of the 19-channel EEG signals is considered as a node in the brain network and Pearson Correlation Coefficients are calculated between every two nodes as the new features of EEG signals. Then, the Partial Least Square (PLS) is used to select the top 10 most varied features and Pearson Correlation Coefficients of selected features are compared to show the difference of two groups. Result shows that the classification accuracy of two groups is improved from 88.13% by the method using measurement of EEG overall energy to 97.19% by the method using EEG correlation measurement. Furthermore, the features selected reveal that the most important interregional EEG correlation changed by training is the correlation between left inferior frontal and left middle temporal with a decreased value.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

ارائه یک روش برچسب ‌گذاری سیگنال‎های مغزی به‎منظور طبقه‎بندی حالت‎های مختلف بیهوشی

 Aims and background:    This    study    develops    a    computational    framework    for    the    classification    of    different    anesthesia    states,    including    awake,    moderate    anesthesia,    and    general    anesthesia,    using    electroencephalography    (EEG)    signals    and    peripheral    parameters. Materials and Methods: The    proposed    method    proposes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational intelligence and neuroscience

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016